Question Answering Using Match-LSTM and Answer Pointer

نویسندگان

  • Annie Hu
  • Cindy Wang
  • Brandon Yang
چکیده

Machine comprehension of text is a significant problem in natural language processing today – in this project, we tackle machine reading comprehension as applied to question answering. Our goal is: given a question and a context paragraph, to extract from the paragraph the answer to the question. As an oracle, on the dataset we used, humans score over 86.8% accuracy (EM) on the test set for this task, while the best models only achieve roughly 75%. Existing approaches to this extractive Question Answering problem typically involve an encoding layer that encodes the question and paragraph into a sequence, some additional layer that accounts for interaction between the question and paragraph, and a final decoding layer that extracts the answer from the paragraph [2][3][4][7]. In this paper, we will follow a similar structure, using LSTMs in our encoding and decoding layers, and calculating attention as our interaction layer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Match-LSTM for Machine Comprehension

Machine comprehension is a critical problem that lies on the frontier of natural language processing. The Stanford Question Answering Dataset (SQuAD), offers a set of questions and their answers created by humans through crowdsourcing. We implemented an end-to-end neural architecture for the task based on MatchLSTM and Pointer Net, inspired by previous work done by Wang and Jiang in Machine Com...

متن کامل

Question Answering Using Regularized Match-LSTM and Answer Pointer

Automated reading comprehension is an important problem in natural language processing. The Stanford Question Answering Dataset (SQuAD) is a convenient set of questions and crowdsourced answers to utilize for evaluation of QA systems. In this paper, we implement a version of an architecture proposed by Wang and Jiang (2016) based on match-LSTM [9], a model used for textual entailment, and answe...

متن کامل

Coattention Answer-Pointer Networks for Question Answering

Machine comprehension (MC) and question answering (QA) are crucial tasks in natural language understanding. Training deep neural network-based QA models has become practical upon the recent release of the Stanford Question Answering Dataset (SQuAD), a significantly larger dataset of question-answer pairs created by humans on a set of Wikipedia articles [1]. In this paper, we propose an end-to-e...

متن کامل

Machine Comprehension Using Match-LSTM and Answer Pointer

Machine comprehension of text is an important problem in natural language processing. A recently released dataset, the Stanford Question Answering Dataset (SQuAD), offers a large number of real questions and their answers created by humans through crowdsourcing. SQuAD provides a challenging testbed for evaluating machine comprehension algorithms, partly because compared with previous datasets, ...

متن کامل

Sing M Atch - Lstm and a Nswer P Ointer

Machine comprehension of text is an important problem in natural language processing. A recently released dataset, the Stanford Question Answering Dataset (SQuAD), offers a large number of real questions and their answers created by humans through crowdsourcing. SQuAD provides a challenging testbed for evaluating machine comprehension algorithms, partly because compared with previous datasets, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017